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Abstract

In both human and wildlife disease systems, seasonal shifts in host immunity may shape

the timing and severity of epidemics. Yet, the immune responses that govern infection, as

well as seasonal patterns in their expression, are typically not observed. Rather, field studies

collect phenomenological data on infection outcomes. Pairing epidemic data with models that

directly parameterize immune metrics can then be a powerful approach for exploring the role

of seasonally varying immunity on disease. This may be particularly successful when datasets

include multiple outbreaks in the same host-pathogen system. Long-term data sets such as these

can be used to determine how well a parameterized model follows trends in the field data, and

whether deviations in the parameters can reproduce the differences observed among outbreaks.

Previous work in theDaphnia dentifera-Metschnikowia bicuspidata focal host-fungal pathogen

disease system has not taken full advantage of coupling patterns in nature with mechanisms pre-

dicted by theory. Here, we study a mathematical model that takes into account host immunity

in the form of resistance to and recovery from M. bicuspidata infections and seasonal variation

in key aspects of the system’s epidemiology and ecology. Specifically, host population birth

rates, predation, transmission, and recovery rates, as well as the fungal spore release rate were

allowed to vary within the season. Our simulations revealed that modification of a system’s

carrying capacity could produce good correspondence between observed and model-estimated

densities. By modifying the transmission, spore release, and the fraction of recovering hosts, we

were able to well capture the timing of disease outbreaks, as well as other qualitative features of

outbreaks, such as the disparity between the prevalence of early and late infections. Our model

results suggest that host immunological parameters are an important within-host constraint on

disease dynamics.

1 Introduction

Parasites and pathogens are regulated by two environments – the host itself, and the environment

in which the host lives. Both of these environments are subject to seasonal variation, which when

combined can create temporal variation in the dynamics of disease [1]. For instance, in environ-

mentally transmitted pathogens, free-living infective stages may be affected by seasonal variation

in UV radiation and temperature [16, 17, 23, 24, 25]. The host environment, and the immune de-

fenses that comprise it, can also shift seasonally with changes to resources, competitors [7, 20], and
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predators [11, 7, 20] [25]. The contributions of the simultaneous seasonal changes in the within-host

and external environment can be difficult to separate with field patterns, making model predictions

an essential tool in disease ecology.

The interaction between Daphnia hosts and Metschnikowia fungal pathogens, has been a powerful

system for bridging theory to empirical work [30, 14, 12, 24, 25]. Nearly two decades of data-

theory coupling have explored many aspects of this system, often by varying one parameter at

a time. As a result, we know that many, but not all, Daphnia hosts are capable of mounting

immune responses that prevent Metschnikowia infection [30, 29, 31]. Hosts can recover from initial

exposure to the pathogen, a mechanism termed barrier resistance, or may clear the infection later, a

mechanism referred to as internal clearance. Additionally, the host may limit within-host pathogen

growth, leading to reduced spore yield [36]. Resources strongly influence disease dynamics [13, 4],

as does the presence or absence of particular predators or competitors [11]. Although all these

ecological interactions vary seasonally, previous work has not specifically included the seasonal

dynamics of the two environments faced by the parasite. Here, we investigate the role of seasonal

variation in a suite of epidemiologically relevant parameters. In the host environment, we modify

the pathogen’s transmission rate, host immunity, and spore yield. In the extrinsic environment, we

modify predation, host birth rate, and carrying capacity. All three of these immunological processes

may vary seasonally, likely in response to changing resources, predation, and clonal selection.

In addition to the within-host processes that are governed by the immune response, transmission

rate, which depends on both encounters with the pathogen per time and the probability of infection

given sufficient contact, also greatly affects the progression of an outbreak [1, 26]. There are

numerous examples of how seasonality can influence transmission [3, 15]. Contact rates in the case

of Daphnia are affected by external factors, such as storms and the ensuing convection in lakes

which increases the contact rate between spores and hosts [12] and temperature [25]. Predation,

which varies seasonally, has long been known to affect Daphnia epidemics caused by a bacterial

parasite (Pasteuria ramosa) [11]. More recently, it has also been shown to affect the competition of

P. ramosa with M. bicuspidata [2]. Specifically, sloppy predators such as midge larvae (Chaoburus

spp.) can enhance the contact between hosts and fungal spores, by releasing the spores into the

water column while preying on infected hosts [6]. In the other extreme, some fish predators, like the

bluegill sunfish, selectively prey on opaque infected Daphnia hosts that are visually conspicuous,

thus effectively removing the fungal spores from the water column [11]. However, it does not mean

that selective fish predation alone can eliminate the risk of epidemics since outbreaks occurred in

a lake-enclosure experimental study under various predation intensities [10].

The goal of our study is to reproduce the distinct epidemic patterns observed in the Daphnia-

Metschnikowia system and evaluate the importance of immunological parameters in generating

them. In six Indiana lakes that were studied extensively through biweekly sampling [29], prior

research documented unique temporal dynamics in disease outbreaks. In some lakes, there was

an initial summer peak in the prevalence of late infections followed by a second and considerably

higher peak in late fall, whereas in other lakes, a first peak was absent or negligible. These dynamics

could be further differentiated by the extent to which early infections (from which the host is able
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to recover) aligned with or were independent of, late infections (which are terminal). Daphnia

exposed to fungal spores can clear early infections before they develop into late and transmittable

infections, Fig. 1. Thus, these patterns suggest that in addition to seasonal changes in predation

seasonally varying host immunity may play a role in generating the temporal dynamics of this

disease.
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Figure 1: Field data for early (blue dots) and late (red squares) prevalence in Beaverdam (panel

a), Benefiel (panel b), Downing (panel c), Hale (panel d), Midland (panel e), and Star (panel f)

lakes from [29].

The article is structured as follows. In subsection 2 we describe our model with seasonally varying

parameters. In section 3 we first explore the structural parameter identifiability properties of the

model and then present results of model simulations where the role of the within-host environment

and the extrinsic environment is teased apart. Finally, in section 4 we summarize our findings and

outline future research directions. Additional details are included in the Appendix.

2 Model

We focus our investigation on a compartmental model for the densities of the host (susceptible, S,

exposed (non-terminally infected), E, (terminally) infected, I) and free-living fungal spores, Z. A
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diagram of the model is shown in Fig. 2. One main feature setting us apart from previous models

is that due to recent findings [31], we allow non-terminally infected hosts E to recover and move

back into the susceptible class, S. Moreover, we incorporate seasonal variation in environmental

and within-host characteristics to better capture the qualitative transmission dynamics observed in

the field. We model five parameters (Fig. 3) as time-dependent based on multiple studies showing

seasonal variation in these parameters in the field [9, 26, 27, 29, 34].

The model equations read

dS

dt
= Btb(t)(S + ρ(E + I))

(
1− S + E + I

K

)
− (d+ Ptp(t))S − btβ(t)SZ + ktk(t)αE (1)

dE

dt
= btβ(t)SZ − (d+ Ptp(t))E − αE (2)

dI

dt
= (1− ktk(t))αE − (d+ v + θPtp(t)) I (3)

dZ

dt
= Σtσ(t) (d+ v) I − λZ − f (S + E + I)Z (4)

Susceptible Daphnia, S, grow at a time-dependent rate Btb(t), which is driven by seasonality

according to b(t), where t denotes time and Bt is a constant parameter whose role is to modify

the magnitude of the time-varying growth rate b(t). Density-dependent effects on birth rates are

well known to vary seasonally in Daphnia populations [34]. All hosts give birth to susceptible

individuals, and the birth rate of the exposed and infected classes is reduced by ρ. Births by all

classes are subject to density dependence via the carrying capacity K. Hosts die at a background

mortality rate of d and due to predation by fish which varies throughout the year [27, 34] so it

becomes time-dependent at a rate Ptp(t). Again, we use p(t) to denote the time-varying parameter

and the constant parameter Pt to modify its magnitude. Hosts become infected at a rate btβ(t)

after ingesting fungal spores, Z, existing in the water column. The infection rate btβ(t) depends on

the contact rate between hosts and spores and the probability of infection given such a contact, and

increases with foraging rate (i.e., exposure increases transmission) and decreases with resistance

(i.e., immune barriers reduce transmission). This rate is also time-dependent due to the likelihood

of seasonal variation in Daphnia immune responses [29]. Once hosts ingest the spores, they move,

via btβ(t)SZ into the exposed Daphnia compartment, E. Finally, individuals are added back to

the susceptible class via recovery from early infection at a rate α. The fraction that can recover

likely varies in time, due to seasonally varying immunity, and is modified by ktk(t).

Exposed Daphnia, E, are assumed to suffer from the same death rate as susceptible hosts. A

proportion ktk(t) of them recover at a rate α [31, 33]. The remaining proportion 1− ktk(t) moves

into the infected class, I, at the same rate α.

Infected Daphnia, I, suffer an increased predation rate, denoted by the parameter θ > 1 because

infection renders them opaque and more conspicuous to visual predators. They also die at an

increased rate, due to disease-induced mortality, v.

Fungal spores, Z, are released in the water column by dead infected hosts, I, according to Σtσ(t)

which accounts for the spores contained within each infected host. Due to seasonally varying
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immunity, this spore yield is assumed to vary within the season. Spores inside hosts that are eaten

by fish are assumed lost and do not contribute to this term. Spores are eliminated from the water

column due to sinking and UV destruction at a constant rate λ and are also eliminated by Daphnia

ingestion at a constant rate f . A diagram of the model is shown in Fig. 2.
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Figure 2: A diagram of the seasonal SEIZ model described by (1-4).

For the time-varying parameters, we assume that the birth rate b(t), transmission rate β(t), preda-

tion rate p(t), and the spore release parameter σ(t) increase at the beginning of the season, reach

a peak and then decrease in the fall (Fig. 3, panels a-c and e). On the other hand, the fraction of

hosts able to recover k(t) exhibits the opposite trend (Fig. 3, panel d). The default time-varying

parameters are modified by being multiplied by constant prefactors, Bt for b(t), Pt for p(t), bt for

β(t), kt for k(t) and Σt for σ(t). The benefit of this notation is that by varying the prefactor we

vary the average of the time-varying parameter by the same factor, i.e., setting Bt = 1.2 increases

the average of Btb(t) by 20%. Hence, it is a convenient way to make comparisons. Parameter values

are based on previous publications as noted in Table 1.

3 Results

In this section, we present local parameter identifiability and simulation results for model (1-4)

using the time-varying parameters shown in Fig. 3. We note that our ultimate goal is not to

obtain the most accurate fit of the model to the data. Instead, we are interested in understanding

the mechanisms driving the observed patterns. For this reason, we are only varying a few key

parameters and studying how they affect the model output. It has been proved that SIR and SEIR

type models can be fitted to almost any prevalence time series as long as the transmission coefficient

is time-varying [19]. However, it was also shown that the inverse problem is under-determined which
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Figure 3: Time varying model parameters. Birth rate b(t) (panel a), predation rate p(t) (panel b),

transmission rate β(t) (panel c), fraction of hosts able to recover k(t) (panel d), and spore release

from dead infected hosts σ(t) (panel f).

increases the risk of over-fitting. Hence, we focus on qualitatively matching the epidemic patterns

observed in the field with the understanding that more than one parameter combination may result

in qualitatively similar epidemic curves.

3.1 Local identifiability analysis

We use the software package STRIKE GOLDD [35] to study the structural identifiability properties

of the time-varying parameter model (1-4). Parameters that are structurally identifiable can be

determined uniquely (namely, are globally identifiable) or up to finite number of values (that is,

are locally identifiable) from noise-free observations. Structural identifiability does not take into

account the length and quality of the observations. In reality, fitting models to time series is even

more challenging due to practical identifiability issues [21]. These arise when there is insufficient

data, e.g., too short time-series, and/or noisy data.

We analyzed model (1-4) considering as observations the total density N = S + E + I, the early

infection PE = E
S+E+I and late infection P I = I

S+E+I prevalence. We assumed that the values of

parameters {ρ, d, α, v, θ, λ, f} are known. This is consistent with published studies. For instance,

the fecundity reduction ρ due to the infection and disease progression/recovery have been recently

studied in [8, 28] and [31], respectively. The time-varying functions (model inputs) b(t), p(t), β(t),

k(t) and σ(t) were considered known, while {Bt,K, Pt, bt, kt,Σt} are considered unknown. It was
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Symbol Definition Value

S susceptible population - mg C/l

E exposed population - mg C/l

I infected population - mg C/l

Z spores in water column - mg C/l

t time - days

b growth rate 0.134-0.25 day−1 [6]

ρ decreased fecundity coefficient 0.85 [6, 7]

K carrying capacity 2-20 mg C/l [7]

d background mortality rate 0.03 day−1 [6]

p predation rate 0.02-0.075 day−1 [6]

β transmission rate 2.15-2.75 l (mg C day)−1 [7]

k fraction of recovering hosts 0.66-0.95 [31]

v disease-induced mortality rate 0.08 day−1 [6]

θ fish predation intensity constant 3 [6]

α infection progression rate 0.5 days−1 [31]

σ spore biomass per dead infected host biomass 1-2 mg C/l l/mg C [7]

λ spore loss rate 0.1 day−1 [6]

f spore removal rate by hosts 0.2 l (mg C day)−1 [7]

Table 1: Model variables & parameters. For time-varying parameters, b, p, β, k and σ, their range

is shown.

determined that parameters {Bt,K, Pt, kt} are locally structurally identifiable, while {bt,Σt} are

not. Moreover, the initial condition for Z(t), since it is considered unknown, is unidentifiable too.

In reality, however, we are not able to know the model inputs, so we also run the analysis by

considering u1(t) = Btb(t), u2(t) = Ptp(t), u3(t) = btβ(t), u4(t) = ktk(t), and u5(t) = Σtσ(t), as

unknown linear inputs and K as an unknown parameter. It was determined that K is identifiable,

u1, u3 and u4 are observable, but u2 and u5 are not observable, neither is the initial condition for

the spore density, Z(0).

3.2 Simulation results

In this subsection we present simulation results with parameter values and initial conditions for the

ten best fits for each lake. Details of the fitting are in the Appendix. We used least squares fitting

with a cost-function given in Eq. (5) and having {Bt,K, Pt, bt, kt,Σt} as free parameters and Z0 as

a free initial condition. Parameter ranges are shown in Table 3 in the Appendix.

As shown in Fig. 1, late-stage infections (characteristic of an epidemic) were not detected in Beaver-

dam Lake even though early infections were present in up to 20% of observed hosts. Qualitatively,

these patterns suggest that early-stage infections were not developing into late infections, or were

so at a level below detection. This pattern, a moderate proportion of early-stage infections, E/N ,

where N = S+E+I is the total host density, and a low proportion of late-stage infections, I/N , is
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captured by our model when the scaling factor for the growth rate Bt ranges from 1− 2.7, carrying

capacity K ranges between 11 and 23, predation rate is increased to Pt = 2.1 − 5.4, transmission

rate bt is between 0.7 and 2.9, the scaling factor for the fraction of recovering hosts is in the range

of kt = 0.96− 1.02, the spore release factor Σt ranges from 0.65 to 2.6 and the initial spore density

Z0 = 3.7 · 10−6 − 1.5 · 10−4. All other parameters are at their default values, shown in Table 1.

In Fig. 4 we show ten simulated curves with the smallest mean squared error (ten best fits). The

parameters clouds that generate these ten curves are shown in Fig. 5. The color coding in Figs.

4 and 5 is consistent. That is, each curve’s color is the same as the color of the parameters that

generated it.

Figure 5 suggests that to capture the field pattern, growth rate and predation rate must be balanced,

namely there is a positive relationship between them (the Pearson coefficient is 0.83 for the scatter

plot of panel a, Fig. 5 and the Spearman coefficient is 0.78). There also exists a negative relationship

between spore yield and transmission rate in the 10 best fits (Fig. 5, panel c) with a Spearman

coefficient equal to -0.74. We also note that the fraction of recovering hosts is high, kt ≈ 1. This

is consistent with the hypothesis that a high fraction of recovering hosts does not lead to terminal

infections, hence the peak in the early-stage infection prevalence can be larger than the peak in

late-stage infection prevalence.
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Figure 4: Model simulations capturing the Beaverdam Lake epidemic pattern. Results from the

ten simulations with the smallest mean squared errors are shown for the total host density (panel

a), early infection prevalence (panel b) and late infection prevalence (panel c).

In Benefiel Lake, early-stage infection prevalence reached almost 70% and late-stage infections

followed closely in time (Fig. 1). This outbreak is characterized by a single peak (single wave in

pandemic-era parlance) and occurred after mid-August. Our model results, Fig. 6, do not match

quantitatively the observed patterns: early-stage infection prevalence is well below 70%. It should

be noted that the initial density for the spores, Z0, is several orders of magnitudes smaller than
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Figure 5: Parameter clouds generating the plots in Fig. 4 for the Beaverdam Lake. A wide range

of scaling factors for the growth rate and predation rate (panel a), transmission rate and recovery

fraction (panel b), spore yield and transmission rate (panel c), and initial spore density and the

scaling factor for the transmission rate (panel d) produce comparable total density and prevalence

curves. The color coding is consistent with that of Fig. 4.

in the Beaverdam simulations (Fig. 5, panel d) in order to delay the onset of the epidemic. In

the parameter clouds for Beaverdam, there is a significant correlation (Pearson coefficient 0.9561,

Spearman coefficient 0.9394) between the growth rate Bt and the predation rate Pt prefactors (Fig.

7, panel a) and a nonlinear relationship (Spearman coefficient is -0.9636) between the spore release,

Σt, and transmission coefficient, bt, prefactors (Fig. 7, panel c). For the ten best-fit simulations

shown the carrying capacity varied from K = 11 to 23.4.

Downing Lake had a sustained epidemic that began in July and lasted until the end of the season.

Early-stage infections were immediately followed by late-stage infections, both classes of which

grew to high prevalence values. Specifically, early-stage infection prevalence reached almost 70%,

and late-stage infection prevalence was higher than 20% from mid-July until mid-November. Our

model captures this pattern, Fig. 8. The values of the carrying capacity K were between 6.3 and

7.3. In the parameter clouds we observe a negative relationship between the spore release Σt and

transmission bt factors (the Spearman correlation coefficient is -0.9394).

The model results for Hale Lake do not match the field data well, Fig. 10. The increase in the early

infection prevalence between days 20 and 40 was missed by the model and the fluctuations in the

field data between days 80 and 140 were also not present in the model simulations (panel b). The

late infection prevalence trends were captured in a more acceptable fashion, since there was only

a minor peak in the beginning of the season and a second peak later (panel c). Host total density

experienced fluctuations (panel a) which may have affected the prevalence results. The parameter
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Figure 6: Model simulation capturing the Benefiel Lake epidemic pattern. Results from the ten

simulations with the smallest mean squared errors are shown for the total host density (panel a),

early infection prevalence (panel b) and late infection prevalence (panel c).
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Figure 7: Parameter clouds generating the plots in Benefiel Lake, Fig. 6. A wide range of scaling

factors for the growth rate and predation rate (panel a), transmission rate and recovery fraction

(panel b), spore yield and transmission rate (panel c), and initial spore density and the scaling

factor for the transmission rate (panel d) produce comparable total density and prevalence curves.

clouds generating these best fits are shown in Fig. 11. Host carrying capacity varied in the ten

best fits from K = 2.2 to K = 2.5. There is a negative correlation between the prefactors of the

spore release parameter Σt and transmission rate bt (the Spearman correlation is -0.9273).
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Figure 8: Model simulation capturing the Downing Lake epidemic pattern. The ten fits with the

smallest errors are shown.
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Figure 9: Parameter clouds generating the plots in Downing Lake, Fig. 8. A wide range of scaling

factors for the growth rate and predation rate (panel a), transmission rate and recovery fraction

(panel b), spore yield and transmission rate (panel c), and initial spore density and the scaling

factor for the transmission rate (panel d) produce comparable total density and prevalence curves.

Midland Lake experiences an epidemic late in the season. Early-stage infections occur at low preva-

lence for months before late-stage infections appear. Once the epidemic began, early-stage infection

prevalence reached a maximum of more than 80%, while late-stage infection prevalence reached a

maximum of about 30%. Host immune responses and/or high predation may be responsible for the
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Figure 10: Model simulation for the Hale Lake epidemic pattern. The ten fits with the smallest

errors are shown.
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Figure 11: Parameter clouds generating the Hale Lake plots, Fig. 10. A wide range of scaling

factors for the growth rate and predation rate (panel a), transmission rate and recovery fraction

(panel b), spore yield and transmission rate (panel c), and initial spore density and the scaling

factor for the transmission rate (panel d) produce comparable total density and prevalence curves.

difference in both the temporal dynamics and prevalences of these two classes. Our model is once

again inadequate to match the observed field pattern. The simulated early infection prevalence is

lower and starts later than the observed one (Fig. 12, panel b) and the simulated late infection

prevalence stays at levels lower than the observed ones (Fig. 12, panel c). The ten best fits showed
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large variation in the host carrying capacity K which ranged from 8 to 18.1. The remaining pa-

rameter clouds are shown in Fig. 13. There is again a correlation between the prefactors of the

spore release parameter Σt and transmission rate bt (the Spearman correlation is equal to -0.903).
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Figure 12: Model simulation for the Midland Lake epidemic pattern. The ten fits with the smallest

errors are shown.
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Figure 13: Parameter clouds generating the Midland Lake plots, Fig. 12. A wide range of scaling

factors for the growth rate and predation rate (panel a), transmission rate and recovery fraction

(panel b), spore yield and transmission rate (panel c), and initial spore density and the scaling

factor for the transmission rate (panel d) produce comparable total density and prevalence curves.

Star Lake had a unique pattern of infections Fig. 14. While early-stage infections exceeded 60% in
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July, they rapidly declined only to rebound later in the season. Late-stage infections were rare in

the early season and did not map well to early-stage infections. However, later in the season, there

was a close correspondence between the timing and prevalence of the two infection types. The early

temporal mismatch suggests that immune responses may have been preventing late-stage infections

in July, but that immunity may have eroded over the season, allowing late-stage infections to

eventually become abundant. We could not recreate these unique dynamics with the time-varying

parameters. The sampling period for Star Lake was shorter and this may affect the results of the

numerical study. The host carrying capacity, K, for the curves in Fig. 14 was between 19 and

24. The rest of the fitted parameter values are shown in Fig. 15. There is a positive correlation

between the prefactors for the growth rate, Bt, and predation rate, Pt, shown in panel a of figure

15 (the Spearman correlation is 0.6727). There is also a negative nonlinear relationship between

the prefactors of the spore release parameter, Σt, and transmission rate, bt, shown in panel c (the

Spearman correlation coefficient is -0.9639).
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Figure 14: Model simulation for the Star Lake epidemic pattern. The ten fits with the smallest

errors are shown.

3.3 Possible mechanisms explaining observed patterns

We also created aggregated parameter clouds by combining the parameters from all six lakes. Our

goal is twofold. First, we aim to look for and compare any signatures that specific lakes may have.

Our second objective is to determine whether some of the trends (such as the positive correlation

between Bt and Pt and the negative correlation between Σt and bt) evident in isolated lakes persist

and whether new correlations emerge. The parameter clouds generated from the 60 best fits for

each of the seven fitted parameters are shown in Fig. 16. We note that the Star lake data set starts

much later (July 17th) than the other five lakes (June 5th). Hence, when we compare the values

for the initial spore density, Z(0), time zero refers to different dates.
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Figure 15: Parameter clouds generating the Star Lake plots, Fig. 14. A wide range of scaling

factors for the growth rate and predation rate (panel a), transmission rate and recovery fraction

(panel b), spore yield and transmission rate (panel c), and initial spore density and the scaling

factor for the transmission rate (panel d) produce comparable total density and prevalence curves.

In the aggregated parameter clouds, there is a positive correlation (the Spearman coefficient is

0.5736) between the prefactor of the transmission rate, bt, and the prefactor of the fraction of

recovering hosts, kt, as seen in Fig. 16, panel b. Our argument for explaining this positive corre-

lation is that a higher transmission rate compensates for a higher fraction of recovering hosts. We

must recall that only dead terminally infected individuals produce spores, hence as the fraction of

recovering hosts increases (which translates into fewer free-living infectious spores) this must be

compensated with higher transmission rate to achieve the same prevalence.

We also found a negative correlation (the Spearman coefficient is -0.4497) between Σt and bt (panel

c). We interpret this trend as follows. The parameters bt and Σt are not identifiable and they both

control transmission, bt being the prefactor of the transmission rate and Σt being the prefactor of the

spore yield. Hence, a negative correlation between them is not unexpected, as higher transmission

rate can compensate for lower spore yield.

Another positive correlation (the Spearman correlation is 0.7174) exists between the prefactor of

the predation rate, Pt, and the host carrying capacity, K, (panel e). While these parameters are

locally identifiable, structural (theoretical) identifiability does not imply practical identifiability.

Thus, in the absence of practical identifiability, high predation rate is compensated by high host

carrying capacity to keep the host density at the required level. Another manifestation of this

correlation is that when the variation in the fitted values for Pt is small, so is the variation in K.

This can be seen in panels a, e and f of Fig. 16 for Downing (green dots) and Hale (gray dots).

Looking at the role of immunity, modeled through the transmission rate bt and the fraction of
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Figure 16: Parameter clouds for all six lakes. The clouds are aggregated from the 10 best fits for

each individual lake.

Beaverdam Benefiel Downing Hale Midland Star

maxPE sim. 0.12 0.47 0.61 0.20 0.36 0.64

maxPE obs. 0.2 0.7 0.68 0.54 0.84 0.74

maxP I sim. 0.025 0.36 0.33 0.55 0.22 0.3

maxP I obs. 0 0.30 0.36 0.86 0.3 0.6

Pt (2, 5.5) (0.36, 1.5) (0.71, 0.81) (0.02, 0.052) (4.1, 5.5) (4.43, 5.49)

bt (0.72, 2.8) (0.88, 3.7) (1.72, 3.4) (0.11, 0.92) (0.88, 2.49) (0.60, 3.58)

kt (0.96, 1.03) (0.8, 1.03) (1.01, 1.03) (0.13, 0.47) (0.45, 0.75) (0.09, 0.38)

Σt (0.65, 2.6) (0.62, 2.4) (1.34, 2.81) (0.49, 2.91) (0.82, 2.03) (0.39, 2.69)

Table 2: Simulated and observed maximum early-and late-stage infection prevalence and fitted

parameter values for the six lakes.

recovering hosts kt, we notice the following. Hale has maxP I > maxPE and low kt, while the rest

of the lakes which have maxPE > maxP I also have higher kt, Table 2.

Hypothesis I: We hypothesize that a higher fraction of recovering hosts causes the late-stage

infection prevalence to be lower than the early-stage infection prevalence.

A second hypothesis is with regards to transmission rate bt in combination with the spore yield Σt.

We notice that as the transmission rate increases, the spore yield decreases, Fig. 16, panel c. We

calculated the mean and standard deviation of the product btΣt (for the ten best fits) for each of

the six lakes. We found the values 2.78± 0.88 for Beaverdam, 1.86± 0.33 for Benefiel, 4.60± 0.13
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for Downing, 0.37± 0.07 for Hale, 2.31± 0.39 for Midland, and 1.47± 0.13 for Star lake. We also

fitted hyperbolas of the form Σt =
C
bt
, where the constant C is equal to 2.42 for Beaverdam, 1.78

for Benefiel, 4.60 for Downing, 0.34 for Hale, 2.15 for Midland, and 1.49 for Star.

Hypothesis II: We hypothesize that a low product of transmission rate and spore yield suppresses

early-stage infection prevalence more than it suppresses late-infection prevalence.

Finally, predation rate in Hale was also an outlier (0.02 < Pt < 0.052) compared to the rest of the

lakes, Table 2. We recall that predators prey preferentially (by a factor of θ = 3) on terminally

infected hosts.

Hypothesis III: We hypothesize that low predation rate supports higher late-stage infection

prevalence and lower early-stage infection prevalence.

To test these hypotheses, we ran 5000 simulations with fixed initial condition for the susceptible

population, S(0) = 5, zero initial conditions for the exposed E(0) = 0 and the infected hosts

I(0) = 0, and with the rest of the parameters and initial conditions being chosen randomly in the

same way as when the fitting was performed. The ranges for these parameters and initial conditions

are shown in Table 3 in the Appendix. We created two parameter clouds; the blue cloud for the

runs with maxPE > maxP I+0.4 and the red cloud for the runs for which maxP I > maxPE+0.4.

The difference between the maximum of the early- and late-stage infection prevalence was chosen

to be 0.4 in order to obtain two distinct clusters, Fig. 17. Our first hypothesis, that a small

fraction of recovering hosts kt results in higher late-stage than early-stage prevalence is supported

(panels b and d). Our second hypothesis that a low product of transmission rate and spore yield

suppresses early-stage infection prevalence more than it suppresses late-infection prevalence is also

supported (panel c) The cyan curve separating the two clusters is given by Σt =
3.3
bt
. Finally, our

third hypothesis that low predation supports higher late-stage infection prevalence is also supported

(panels a and e). Panel f is as expected, since we have set no restrictions on the total host density

which is mostly controlled by the growth rate Bt and the carrying capacity K.

4 Discussion

We considered a mathematical model that explores seasonal changes in the two environments that

parasites can encounter: the host’s external environment and the within-host environment. Given

that environmental conditions and host immunity are known to fluctuate seasonally (with potential

impacts on parasite dynamics), we used disease data from six natural populations spanning the time

before and during when epidemics occur to ask how altering seasonally-dependent host parameters

(birth, death by predation, immunity) and parasite parameters (spore number) influenced our

ability to capture natural disease dynamics with our model.

With a basic time-dependent model, and without changing too many parameters, we were able to

capture many of the epidemiological behaviors observed in the natural populations. In particular,

our models well-replicated the timing of epidemic emergence, the mismatch in the mean prevalences

of early- versus late-stage infections, and the decline of infections toward the end of the sampling
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Figure 17: Parameter clouds from the random simulations. Red dots correspond to parameter

combinations that resulted in the maximum of the late prevalence being more than 0.4 higher than

the maximum of the early prevalence. The opposite holds for the blue dots, namely the maximum

of early prevalence is more than 0.4 larger than the maximum of the late prevalence. In panel c,

the cyan dashed curve is the hyperbola Σt = 3.3/bt.

period. Predicting the next wave of disease is a shared goal in many disease systems. For several

of our study populations, we achieved that goal, even in the face of substantial variation in host

densities among lakes. However, there were some patterns observed in the lakes that our model

was not able to replicate. Star and Hale lakes both showed a sizable pulse in early infections (over

50% in Hale and over 60% in Star) that occurred long before late infections became prevalent and

exhibited epidemic growth. While our model could recreate the mismatch in the general prevalences

of these two classes, the temporal mismatch in peaks between the two classes was not observed in

the model simulations. Our model was able to achieve natural dynamics in lakes where a single

wave was observed later in the season, such as in Beaverdam and Downing lakes. There was also

a reasonably good fit with the pattern observed in Benefiel, which had no recorded late infections

and about 20% prevalence of early stage infections.

The parameters that most critically affected the simulated disease dynamics were the transmission

rate (bt), recovery fraction (kt), spore release rate (Σt), and predation rate (Pt). The reliance of

disease dynamics on transmission, recovery, and spore yield hints at the importance of within-host

processes for regulating epidemiological behavior. That seasonality can modify disease dynamics

through its effects on host susceptibility and immunity is well appreciated. For example, the

Panamanian rock frog (Colostethus panamansis), which can be infected by the fungal pathogen

Batrachochytrium dendrobatidis, often excretes skin chemicals to inhibit infection. The chemical
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composition of these anti-fungal skin secretions varies across seasons, being more effective during

dry seasons than wet ones [22]. This seasonally varying immune defense likely contributes to

observed seasonal variation in both the presence and intensity of B. dendrobatidis infections.

The effects of seasonality on disease can be complex because even simple changes to the extrinsic

environment, like a shift in temperature, can manifest in multiple interrelated ways for a given

host-parasite interaction. For instance, a Daphnia host’s immune response can be directly reduced

by temperature [33] while being indirectly increased by temperature-related changes to resource

availability ([28]. At the same time, seasonal temperature changes can correspond with changes to

the presence and abundance of predators, who can act as enhancers [6] or inhibitors [11] of epidemics

depending on identity. Indeed, past research with Daphnia and its parasites has identified several

important seasonal effects. Once an epidemic is underway, temperature influences both spore

production and subsequent infectivity [25]. Reproduction, which generates susceptible hosts, is

also temperature-dependent [33]. Cooler temperatures and storms [5] have been associated with

increased turbulence and mixing in lakes which increases contact rates between susceptible hosts

and infective spores. Even lake stratification, through modifying the size of the refuge from fish

predators, can affect the severity of an outbreak [18, 32]. We embedded many of these factors into

our model to allow for natural seasonal changes in our parameters and a better correspondence

between the data and the model.

An important aspect of our approach is that fitting the model to the data was a tool and not the

main focus of this work. While model-fitting can be a valuable approach for perfectly recreating

the dynamics of a given system, it comes with the cost of being parameter-heavy. Logistically,

this can result in unidentifiable parameters (as we observed with our model). And in many cases,

the importance of parameters can be system-specific and can have idiosyncratic effects. In con-

trast to this approach, we used a simple model and modified a small set of parameters that were

grounded in well-supported hypotheses about how the Daphnia-Metschnikowia system operates.

By constraining our focus to these distinct parameters, we uncovered generality in processes across

lakes. Namely, seasonality in parameters could account for the natural temporal changes in disease

in these lakes, and the observed variation among lakes could be, in part, recreated through mod-

ifying key parameters such as those regulating transmission, recovery, spore yield, and predation.

Such patterns inspire continued work on how the extrinsic environment, through modifying the

within-host environment, can shape the severity of epidemics [1, 29, 30].
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Appendix

Least Squares Fitting

The least-squares cost function that we used to fit the model to the data is:

C =
1

R

n∑
i=1

(N(ti)−Nd(ti))
2 +

n∑
i=1

(PE(ti)− PE
d (ti))

2 +

n∑
i=1

(P I(ti)− P I
d (ti))

2, (5)

where n is the number of sampling points, R > 0 is a scaling factor that differs among lakes and

takes the values R = 5000 for Beaverdam, R = 500 for Benefiel, R = 600 for Downing, R = 25

for Hale, R = 300 for Midland, and R = 1000 for Star lake. The rationale behind these choices

was to weigh the sum related to total densities N , since it is orders of magnitude higher than that

of the early-stage PE and late-stage P I infection prevalence. The time-series data are denoted by

Nd, P
E
d and P I

d while the model results are denoted by N = S + E + I (total density), PE = E
N

(early prevalence) and P I = I
N (late prevalence).

For each lake we run 1000 simulations and find a ”best fit” using the MATLAB ”fmincon” function.

Initial guesses for the parameters were drawn uniformly from the ranges shown in Table 3. Some of

the runs were discarded, because either the algorithm was stuck at the boundary of the parameter

range intervals or because they did not finish. Of the remaining runs, the 10 best fits were used to

generate the model simulations and parameter clouds shown in the main text.

Parameter Range

Bt [0.5, 4]

K [1, 25]

Pt [0.01, 5.5]

bt [0.01, 4]

kt [0.01, 1.03]

Σt [0.1, 3]

Z0 [1e-10, 2e-04]

Table 3: Parameter ranges for the initial guesses of the parameters and initial conditions (Z0) in

the least-squares fitting.
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